VASAVI COLLEGE OF ENGINEERING (Autonomous), HYDERABAD

 B.E. (I.T.) III Year I-Semester Main \& Backlog Examinations, December-2017Theory of Automata
Time: $\mathbf{3}$ hours
Max. Marks: 70
Note: Answer ALL questions in Part-A and any FIVE from Part-B
Part-A (10×2 $=20$ Marks)

1. Design a DFA that accepts strings containing Even no. of zeros and Odd no. of ones.
2. Write the applications of finite automata.
3. Write the closure Properties of Regular Languages.
4. Draw the derivation tree for the string aabbaa using the following grammar

$$
\begin{aligned}
& \mathrm{S} \rightarrow \mathrm{aAS} \mid \mathrm{a} \\
& \mathrm{~A} \rightarrow \mathrm{SbA}|\mathrm{SS}| \mathrm{ba}
\end{aligned}
$$

5. Define the languages of PDA accepted by final state and by empty stack.
6. Define Griebach Normal Form and give one example for GNF grammar.
7. What is an Instantaneous Description (ID) in Turing Machine and Give the TM formal definition.
8. Distinguish Multi Tape and Multi Track Turing Machines.
9. State Rice Theorem.
10. When a boolean expression is said to be in Conjunctive normal form?

$$
\text { Part-B }(5 \times 10=50 \text { Marks })
$$

11. a) Convert the following NFA to its equivalent DFA.

$\boldsymbol{\delta}$	\mathbf{a}	\mathbf{b}
$-\mathbf{q}_{0}$	$\left\{\mathrm{q}_{0}, \mathrm{q}_{1}\right\}$	$\left\{\mathrm{q}_{0}, \mathrm{q}_{3}\right\}$
q_{1}	\varnothing	$\left\{\mathrm{q}_{2}\right\}$
${ }^{*} \mathrm{q}_{2}$	\varnothing	\varnothing
q_{3}	$\left\{\mathrm{q}_{4}\right\}$	\varnothing
${ }^{*} \mathrm{q}_{4}$	\varnothing	\varnothing

b) Obtain a regular expression for the following Finite Automata.

$\boldsymbol{\delta}$	0	1
$-\mathrm{q}_{0}$	q_{1}	q_{0}
${ }^{*} \mathrm{q}_{1}$	q_{1}	q_{1}

12. a) State the pumping Lemma for Regular Languages and prove that the following Language is not regular.
$L=\left\{a^{p} / p\right.$ is prime $\}$
b) Given the grammar $\mathbf{E}->+\mathbf{E E} / * \mathrm{EE} /-\mathrm{EE} / \mathrm{x} / \mathrm{y}$ and the input string + * $\mathbf{x} \mathbf{y} \mathbf{x} \mathbf{y}$
i) Find Left most Derivation
ii) Find Right most Derivation
iii) Draw parse tree
13. a) Convert the following Context free grammar to Púshdown Automata

I -> a/b/Ia/lb/I0/I1 $\mathrm{E} \rightarrow \mathbf{I} / \mathrm{E}^{\star} \mathrm{E} / \mathrm{E}+\mathrm{E} /$ (E)
b) Convert the following grammar into Chomsky NormalForm(CNF) by making necessary elimination of ϵ-Productions, unit productions and useless symbols.

S $->$ aSB / $€$
A \rightarrow aAS $/ \mathbf{a}$
B $->\operatorname{SbS} / \mathrm{A} / \mathrm{bb}$
14. a) Design a Turing Machine to accept the language

$$
\begin{equation*}
L=\left\{a^{n} b^{n} c^{n} \mid n \geq 1\right\} \tag{3}
\end{equation*}
$$

b) Discuss about the extensions to the Turing Machine.
15. a) What is PCP and whether the following PCP instance has a solution or not.

$$
\begin{equation*}
\mathrm{A}=(01,001,10) \mathrm{B}=(011,01,00) . \tag{5}
\end{equation*}
$$

b) Put the following Boolean expression into 3-CNF.
$x y+\bar{x} z$
16. a) Explain the procedure to convert a $€$-NFA to a NFA and covert the following $€$-NFA to NFA without $€$ transitions.

$\boldsymbol{\delta}$	$\boldsymbol{\epsilon}$	\mathbf{a}	\mathbf{b}	\mathbf{c}
$->\mathbf{q}_{0}$	\varnothing	$\left\{\mathbf{q}_{0}\right\}$	$\left\{\mathbf{q}_{1}\right\}$	$\left\{\mathrm{q}_{3}\right\}$
\mathbf{q}_{1}	$\left\{\mathrm{q}_{0}\right\}$	$\left\{\mathrm{q}_{1}\right\}$	$\left\{\mathrm{q}_{2}\right\}$	\varnothing
${ }^{*} \mathbf{q}_{2}$	$\left\{\mathrm{q}_{1}\right\}$	$\left\{\mathrm{q}_{2}\right\}$	\varnothing	$\left\{\mathrm{q}_{0}\right\}$

b) Discuss Chomsky Hierarchy of languages.
17. Answer any two of the following:
a) Consider the following CFG and test whether the string $\mathbf{1 0 0 1 0}$ is a member or not in the corresponding language.
$\mathbf{S}->\mathbf{A}_{1} \mathbf{A}_{2} / \mathbf{A}_{2} \mathbf{A}_{3}$
$\mathrm{A}_{1} \rightarrow \mathrm{~A}_{2} \mathrm{~A}_{1} / 0$
$\mathrm{A}_{2}->\mathrm{A}_{3} \mathrm{~A}_{3} / 1$
$\mathrm{A}_{3} \rightarrow \mathrm{~A}_{1} \mathbf{A}_{2} / 0$
b) Write about different Programming Techniques for Turing Machine.
c) Define Recursive and Recursively enumerable languages and write their properties.

